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Classification of ordering kinetics in three-phase systems
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Though equations of motion containing transport coefficients are required to quantitatively predict the
phase-ordering dynamics of any given system, a great deal can be gleaned just from the shape of the free-
energy landscape. We demonstrate how to extract the most information concerning phase-ordering phenom-
enology from a knowledge of a system’s free-energy function, or phase diagram. Many putative pathways to
equilibrium can be ruled out on the grounds of the second law of thermodynamics. In some parts of the phase
diagram, these considerations are sufficient to completely determine the phase-ordering process without ever
having to calculate a transport coefficient, even when three phases are present. The results include a large
number of regions of the phase diagram with distinct phase-ordering kinetics, and some surprisingly elaborate
routes to the equilibrium state. A process is found whereby a crystalline condensation nucleus becomes coated
with a shell of gas, buffering it from a majority metastable liquid phase. Our results, based on thermodynamic
arguments, are supported by numerical solution of modelB, which describes diffusive phase-ordering kinetics.
Some of our predictions are tested against experimental observations of colloid-polymer mixtures, described in
more detail in the preceding paper@F. Renth, W. C. K. Poon, and R. M. L. Evans, Phys. Rev. E64, 031402
~2001!#. A compact notation is developed to represent intricate phase-ordering pathways.
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I. INTRODUCTION

Considering that the existence of phase transitions
explained in the nineteenth century, it is perhaps surpris
that their kinetics are not yet fully understood. There is
shortage of academic interest in the subject@1–10#, nor of
applications. In metallurgy and materials science, determ
ing the dynamics of phase separation after a quench i
considerable technological importance for controlling me
scopic texture@11#. Also, the rate at which metastable stat
evolve towards equilibrium determines the longevity~or
‘‘shelf life’’ ! of many industrial products.

The prediction of phase-ordering kinetics presents a c
siderable challenge to condensed matter physics. To be
many phenomenological models exist. However, determin
which is most appropriate to a given system is something
an art since, unlike equilibrium thermodynamics, no gene
formalism is known for deriving macroscopic behavior fro
microscopic properties. The experimental characterizatio
phase-ordering processes is also problematic. Unlike b
thermodynamic properties, which are easily measured,
processes of phase ordering, particularly in the early sta
take place on microscopic length and time scales that are
readily accessible. Additionally, to prepare a we
characterized initial state, the system must be quenc
within this microscopic time scale. As a result of these th
oretical and experimental difficulties, the study of pha
ordering kinetics is still in its early stages. Of all phas
ordering phenomena, only a relatively small proportion ha
been thoroughly investigated. For example, systems w
phase diagrams exhibiting a triple- or higher-phase coex
ence are ubiquitous. Yet the overwhelming majority of exi
ing studies of kinetics are concerned with two-phase regio

In the preceding paper@16# many of the experimental dif
ficulties were overcome in collecting comprehensive data
the kinetics of ordering in a system approaching three-ph
equilibrium. The strategy was to study a complex fluid w
1063-651X/2001/64~3!/031403~13!/$20.00 64 0314
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a phase diagram that mimics that of a simple atomic s
stance such as argon, but the kinetics of which are m
easier to observe. The experimental system chosen w
colloid-polymer mixture. The equilibrium phase behavior
these mixtures is well established@12–14#. Less is known
about the detailed kinetics of their phase ordering in a tw
phase region@15# and, until the recent observations@16#,
next to nothing was known of the approach to three-ph
equilibrium. The recent observations@16# allow us to probe
the phenomenology of phase ordering in some detail. T
reveal a surprising amount of diversity in the chronologic
order of events during the approach to three-phase equ
rium in samples with very similar overall composition.

Our aim, then, is to understand the kinetics of collo
polymer mixtures in and around the three-phase region.
underlying physics has important generic implications. T
is because the relevant features of the free energy and p
diagram of colloid-polymer mixtures, which we shall di
cuss, are shared by many~even most! other complex fluids.
In addition, an exact mapping can be constructed from
properties of a colloid-polymer mixture to those of a sta
dard pedagogical system in a heat bath. In particular,
polymeric activity is exactly analogous to the reciprocal
temperature in an atomic system, and polymeric concen
tion is therefore related to latent heat, while colloidal co
centration maps onto atomic density.

We investigate the thermodynamics of processes wh
lead from an initial homogeneous nonequilibrium state
wards a final three-phase equilibrium. The study will gi
rise to a scheme which, as well as classifying various kine
regimes, turns out to have considerable predictive pow
The framework relies on no phenomenological assumptio
Instead we follow the approach that Cahn applied to simp
systems@17#, to determine the sign of the entropy change
sociated with different processes, thus ascertaining which
netic pathways are forbidden.

The rest of the paper is organized as follows: We brie
©2001 The American Physical Society03-1
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review the equilibrium phase behavior of colloid-polym
mixtures in Sec. II. In Sec. III we study the thermodynam
of phase transition kinetics in colloid-polymer mixtures. T
results of that discussion are used in Sec. IV to classify
catalog the regimes of kinetic behavior in the colloi
polymer phase diagram. Implications for phase transition
other substances are discussed in Secs. V and VI. Som
the predictions of Sec. IV are tested against a simple num
cal model in Sec. VII, and in Sec. VIII we summarize a
conclude.

II. COLLOID-POLYMER MIXTURES

The addition of a nonadsorbing random-coil polymer to
sterically stabilized suspension of quasi-hard-sphere co
dal latices induces an effective pair potential between
particles, known as the depletion interaction@18#. Where two
of the spherical colloid particles are so close together that
smaller polymer molecules cannot fit between them,
polymeric concentration~and therefore the osmotic pressur!
between the spheres is reduced. The range and depth o
effective attraction can be tuned by choosing the size
concentration of the polymer coils@19,12#. In this way, the
topology of the phase diagram can be made to mimic tha
simple atomic/molecular substances, with gas, liquid, a
crystal regions, as well as a point of triple coexistence@13#.

Thus, the polymeric chemical potentialmP can be consid-
ered to parametrize the effective strength of particle-part
attractions in the colloidal suspension, in the same way
the temperature parameterb[1/kBT does for systems o
particles with a real energetic interaction potential. Wh
mP

21 plays the role of temperature in the colloid-polym
mixtures, temperature itself is of only minor importanc
since all interactions in the system are repulsive and, in p
ciple, hard. In practice, some details of the polymer-solv
interactions are not purely steric, so that some tempera
dependence is evident. However, energetics are irreleva
the sense that the phase transition dynamics in this syste
not limited by diffusion of latent heat, since entropy is dom
nated by the solvent bath, which induces Brownian dynam
in the suspended particles.

By choosing the numbers of colloidal particles, polym
molecules, and solvent molecules in a sample, a stat
three-phase coexistence can be orchestrated. Once su
sample has been prepared; it can be homogenized into a
form, nonequilibrium, amorphous state. The subsequent
netics, as it returns to coexistence, were measured in
preceding paper@16# and are analyzed theoretically in th
rest of this paper.

III. THERMODYNAMICS OF PHASE ORDERING

A. Background

A homogeneous system out of equilibrium, which is in
tially in a forbidden~multiphase! region of the phase dia
gram, must eventually attain thermodynamic equilibrium
arriving on the phase boundaries. Out of the many availa
paths through phase space, it is not generally obvious w
one it will take on its approach to the equilibrium state. Ca
@17# showed how the shape of a mean-field free-energy cu
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~that is, the free energy of a uniform phase with no sign
cant heterogeneities! alone can be used to narrow the pos
bilities, ruling out some pathways. Of course, to ascertain
exact course that the system will follow, one must calcul
both the rates of nucleationand the subsequent growth rate
~either of which may exhibit highly nontrivial behavio
@7–10,20#! for various processes. That would require a d
tailed knowledge of the mobilities and gradient energies
various order parameter fields, as well as an ansatz for
phenomenological equations of motion. However, withou
knowledge of any such kinetic parameters, Cahn@17#
showed how to limit the possibilities, simply by determinin
which condensation nuclei carry an entropic cost, and m
therefore dissolve in the metastable majority phase.

The principle, which was used@17# to investigate nucle-
ation in substances with a free energy that is a function o
single composition variable, is as follows. Consider a syst
with free-energy densityf (f) as a function of the uniform
compositionf, given in Fig. 1. If the composition is initially
uniform atf5fa , it can be shown~simply by conservation
of material! that the free energy available to create an infi
tesimal amount of a second phase at concentrationfb is
given by the distanceD f from the tangent. Thus, nucleatio
of a phase with compositionf,fc cannot take place, as i
would raise the system’s free energy, and must therefore
solve in the majority phase. Despite the simplicity of th
principle, it can be applied to obtain generic and sometim
counterintuitive results. For example, for certain free-ene
curves, the nucleation of the final, stable states is forbid
until after the formation of metastable precursors@17#.

B. Free-energy landscapes

The whole basis of this formalism relies on the existen
of free-energy curves which are not globally convex. Su
curves ~whose shapes give rise to the expression ‘‘fre
energy landscape’’!, if misinterpreted, might be dismissed a
unphysical, as we now discuss. After sufficient time, the s
tem will attain thermodynamic equilibrium by partitionin
into coexisting regions of differing compositions. The fre
energy of this equilibrated system is required to be a con
function of its mean composition, by virtue of the positivi
of susceptibilities@21#. Indeed, the construction in Fig.
demonstrates that the global free energy is not minimi
unless all tangents lie below the curve. Nevertheless, at e

FIG. 1. Example of the construction on a~mean-field! free-
energy curve, with concave parts, giving the free energy availabl
create an infinitesimal amount of compositionfb in a metastable
phase at compositionfa .
3-2
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CLASSIFICATION OF ORDERING KINETICS IN . . . PHYSICAL REVIEW E64 031403
times, a finite system~or a finite part of an infinite system!,
quenched tof5fa , will explore only a subset of its
configurations—those attributable to the metastable in
phase@22#. During this time, any order parameters that d
tinguish the two phases may be regarded as quenched~as
opposed to annealed! variables.1 Thus, before the secon
phase nucleates, the left-hand well in Fig. 1 is the corr
form of the free energy. For instance, the second deriva
of this curve gives the experimentally measurable susce
bility in the metastable state. In order for this description
apply, where fluctuations within one well of the free ener
are distinguished from fluctuations that form condensat
nuclei, the equilibration time~the time to establish a Boltz
mann distribution! in the metastable state must be much le
than the nucleation time~after which a significant fraction o
the system feels the presence of nuclei!. Given that this cri-
terion is satisfied, the function in Fig. 1 is well defined.2

C. Treatment of two components

For systems with several density variables, the tang
construction depicted in Fig. 1 has a straightforward ext
sion. The free energy becomes a~hyper-!surface spanned b
the composition variables, and entropically favored cond
sation nuclei must lie below its tangent~hyper-!plane. How-
ever, as this becomes difficult to visualize, we shall dem
strate for colloid-polymer mixtures how the simple, on
component method may be rigorously applied to m
complex systems. By the Gibbs phase rule, with two in
pendent concentration variables, a region of triple coex
ence is possible. Hence the principles described above, o
nally applied to a pure system@17#, may be expected to
classify a richer diversity of behaviors.

To classify the possible kinetics of colloid-polymer mi
tures, we reason as follows. The free-energy surf
f (f,np), which is a function of both colloidal and polymeri
concentrations,3 can be mapped by a Legendre transfo
onto a semigrand potential densityV(f;mp). At equilib-
rium, this function is minimized~subject to conservation!
with respect to colloidal concentrationf alone. In that sense
it is a function of one variable, while 1/mp acts as a tempera
turelike parameter controlling the shape of that curve. T
semigrand potential is a standard tool of equilibrium therm
dynamics. During phase ordering, however, it is not obvio
that the polymeric chemical potential can be treated as
external parameter, since it is generally nonuniform. An
ception is in the initial state which is homogeneous, somp
takes a single value. Thus the semigrand potential is a w

1In practice, all quenched variables~those which define a con
straint on a system! are time-scale dependent since, on cosmolo
cal time scales, all constraints will yield to the increase of entro

2The criterion can be violated iff (f) has negative curvature
giving rise to local instability. We note, however, that the pheno
enological description of spinodal decomposition@23#, which relies
on such functional forms, is not without content. For an unambi
ous definition of such functions, see@24#.

3f is the dimensionless colloid volume fraction andnp is the
number density of polymer coils.
03140
l
-

ct
e
ti-

n

s

nt
-

-

-
-
e
-
t-
gi-

e

e
-
s
n
-

ll-

defined curve at both the beginning and end of phase or
ing.

The method for establishing the legality of a nucleati
event, outlined above and depicted in Fig. 1, applies t
free-energy curve~under given imposed conditions such
temperature! which is a function of a single compositio
variable. It would be convenient to apply it to the on
dimensional semigrand potential, in which the control p
rameter is actually the chemical potential of another c
served species. Happily, the method still holds in this case
we now show. LetF init5V f(fa ,na) be the total canonica
free energy of the system of volumeV, initially at a homo-
geneous colloidal concentrationfa and polymeric number
densityna . If a small volumeVb of the system acquires th
composition (fb ,nb), the remainder must change in comp
sition (fa ,na)→(fa1Dfa ,na1Dna) so as to respect con
servation of material, as expressed by

faV5~fa1Dfa!~V2Vb!1fbVb ,

naV5~na1Dna!~V2Vb!1nbVb .

Hence the canonical free energy of the compound sys
becomes

Fcomp5~V2Vb! f ~fa1Dfa ,na1Dna!1Vbf ~fb ,nb!.

So the changeDF5Fcomp2F init in the limit Vb /V→0 is
given by

D f [
DF

Vb
5 f b2 f a2~fb2fa!mc2~nb2na!mp , ~1!

wheref a,b[ f (fa,b ,na,b), andmc andmp are the colloid and
polymer chemical potentials, respectively,mc5(] f /]f)n
and mp5(] f /]n)f . Equation ~1! has the formD f 5 f b
2p(fb ,nb), where p(f,n) is the equation of the plane
tangent tof (f,n) at (fa ,na). If D f is negative, the nucle-
ation process is favorable, whereas the nucleus must re
solve if D f .0. The marginal case, when no canonical fr
energy is available for driving nucleation~but neither is there
a cost to it! of a phase with composition (fb ,nb), is given
by D f 50 in Eq. ~1!. Thus the boundary to the region o
phases that may nucleate is given by

f b5 f a1~fb2fa!mc1~nb2na!mp .

That is, where the free-energy surface is intersected by
tangent at the initial state. In terms of the semigrand poten
densityV[ f 2mpn, this criterion reads

Vb5Va1~fb2fa!mc, ~2!

which is the point of intersection with the tangent line@since
mc5(]V/]f)mp

# on the curveV~f!, equivalent tofc in
Fig. 1.

Thus Cahn’s recipe applies, unmodified, to the semigr
potential curve, withmp a control parameter whose initia
value, though uniform, differs from its value at equilibrium
In fact mp is initially greater than its equilibrium value, sinc
the phase-ordering process is~partly! driven by expansion of
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R. M. L. EVANS, W. C. K. POON, AND F. RENTH PHYSICAL REVIEW E64 031403
the free volume of the polymer gas by overlap of deplet
zones around colloids@18,19#.

D. Description of phase ordering

Consider then the progress of phase ordering in a sys
whose semigrand potential is initially represented by
curve in Fig. 1.~Read V for f in the figure.! The initial
colloidal concentration is uniform atf5fa , as shown by
the dotted line in Fig. 2, which depicts a one-dimensio
slice through the system. Though fluctuations around
mean valuefa will occur in the system, they must all deca
until a ~sufficiently large@25#! region spontaneously exceed
the concentrationfc , as shown by the dashed line in th
figure. Growth of that region is entropically favorable,
material will flow into it, increasing its concentration an
size, while depleting the local surroundings. As the envir
ment is reduced in concentration, belowfa in Fig. 1, the
tangent rotates clockwise, reducing the driving force for f
ther growth of the nucleus. A sharp interface will quick
form between the two concentrations that share a comm
tangent, and are therefore locally in equilibrium, as shown
the solid line in Fig. 2. The distant bulk of the majority pha
remains at its initial concentration, and so a gentle conc
tration gradient exists, driving diffusion of material onto th
surface of the growing condensation nucleus.

Though a continuous range of concentrations exists in
nonequilibrium system~solid line, Fig. 2!, it is clear that two
phases may be unambiguously identified, as they are s
rated by a sharp interface. Such an interface can exist if
free-energy curve has a corresponding pair of cotange
concentrations, whether or not they transpire to be the va
of absolute stability. In fact, since the two phases are se
rated by a~unstable! point of concavity on the free-energ
curve, a continuous gentle concentration gradient betw
them cannot be sustained. This provides an unambigu
definition of a phase in our nonequilibrium systems, wh
we shall henceforth adopt. Two phases are distinct
and only if a continuous diffusion gradient could n
~with appropriate fluxes at the boundaries! be maintained
between them~or, equivalently, if they are separated by
point4/interval of concavity on the free-energy curve!.

IV. THE REGIMES OF BEHAVIOR

Consider again the initially homogeneous system rep
sented by the dotted line in Fig. 2. If its concentration h
been slightly belowfa , a growing nucleus of the secon

4Such as the cusp in Fig. 1.

FIG. 2. Schematic illustration of nucleation.
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phase could still have formed, since the tangent in Fig
would still lie above part of the free-energy curve. Only
the initial concentration were below the point of cotangen
would a nucleation of the second phase be forbidden~en-
tropically unfavorable!. Thus, cotangential concentrations o
the free-energy curve delimit the regimes of allowable nuc
ation events. Some of these cotangencies also define the
odals @phase boundaries, heavy lines in Fig. 3~b!# on the
equilibrium phase diagram, but others are extensions of
binodals into the coexistence regions@dashed lines in Fig.
3~b!#. An example semigrand potential curve at the init
polymeric chemical potentialmp

init in Fig. 3~a! shows the co-
tangencies corresponding to the nucleation boundaries in
schematic phase diagram, Fig. 3~b!.

The boundaries, thus derived from cotangencies on
semigrand potential curve, divide Fig. 3~b! into many re-
gions, each with different possibilities for its initial phas
ordering kinetics. Note that the mean-field gas-liquid sp
odal is also marked. Within the spinodal region, the init
system is locally unstable, so its kinetics are characteristi
a distinct regime. The regions of potentially distinct initi

FIG. 3. ~a! Semigrand and potential density as a function
colloidal concentration for a polymeric chemical potentialmp

int . All
pairs of cotangential points are shown. They correspond to the
existing stable~heavy lines! and metastable~dashed lines! phases
which, with the spinodal~dotted!, divide the phase diagram~b! into
different kinetic regions~A to M!, shown in the (f,mp) plane. The
locus of metastable liquids whose equilibrium is three-phase
shaded gray.
3-4
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CLASSIFICATION OF ORDERING KINETICS IN . . . PHYSICAL REVIEW E64 031403
kinetics are labeledA to M in the diagram. As an example
consider a system which is initially homogeneous at
composition marked~* ! in Fig. 3, which is in regionM. The
three wells in the semigrand potential curve of Fig. 3~a! cor-
respond to colloidal gas, liquid, and crystal phases, in
creasing order of concentrationf. The initial state~* ! corre-
sponds to a liquid phase, and is to the right of the liquid-g
common tangent. Therefore a tangent to the point~* ! lies
below the gas well, so the formation of gas bubbles is dis
lowed. However, free energy is available for the formation
crystallites, so that must be the first process to happen.
serve, though, that no double tangent can be drawn betw
the liquid and crystal wells. Hence a crystallite, once form
cannot attain local equilibrium with the surrounding liqu
phase, but must continue to deplete its concentration unti
crystallite is surrounded by colloidal gas. A second interfa
must form between that gas and the surrounding liquid, si
they are distinct phases, as defined above. Thus, altho
nucleation of gas alone is initially disallowed, the crystallit
that nucleate must be surrounded by a shell of gas ph
Only after the majority liquid phase has been sufficien
depleted by this process~so that its tangent rotates to cro
the gas well! can further gas nuclei form, independently
crystallites.

With a knowledge of the features of the free-energy la
scape alone, not only can such interesting scenarios be
dicted for the initial stages, but also the final state is pre
termined. The compositions and volumes of the fin
coexisting phases are simply found by applying the lever r
to the equilibrium phase diagram~in terms of conserved
polymeric concentrationnp!, and hence the final value of th
polymeric chemical potential is determined. This may
above, below, or equal to the triple valuemp

tr , depending on
the initial composition and on the polymer-colloid size ra
~which parametrizes the effective colloid-colloid interaction!.
So, for states initially above the triple line,mp

init.mp
tr , the

regimes denotedE to M, which are distinguished by thei
initial behaviors, are further subdivided threefold, depend
on whether their final state lies above, below, or on the tri
line. To illustrate this subdivision, the locus of initial state
whose equilibration will take them onto the triple line,
shown schematically in Fig. 3~b!, shaded gray. For differen
polymer-colloid size ratios, the boundaries of this locus c
intersect different regions, though always above the tri
line.

A. Validity

Note that the thermodynamic procedure described in S
III C assumes uniform concentrations within each spatial
gion ~the infinitesimal condensation nucleus and the s
rounding medium!, and takes no account of surface energi
In fact, these assumptions are not at all restrictive, since
erogeneities~which arise due to localized depletion arou
each nucleus! and surface energies can only increase the
energy of the compound system~the system containing a
condensation nucleus!. These effects therefore tend to su
press a nucleation event, but do not move the boundarie
its allowed region. These boundaries delineate the limits
allowed formation of themost favorablenucleus—one which
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pays no free-energy cost for heterogeneities, and is s
ciently large for the free energy of its bulk to outweigh th
of its surface@25#.

The only approximate features of our analysis~other than
the precise locations of the boundaries in Fig. 3! are the
following assumptions:~i! That all possible states lie on
relatively simple free-energy landscape~for a uniform
phase!. We have therefore neglected the highly nonergo
glass@26,6,27–29# and gel@30# states.~ii ! That the topology
of the semigrand potential curve is known. This is rigoro
until the first nucleation event. However, for thetwo-stage
process described above, where a ‘‘shell’’ of gas formssub-
sequentto crystallization in regionM, an approximation is
invoked. In that case, the polymer is required to be su
ciently fast to maintain its equilibrium with the bulk, thu
ensuring that the advancing crystal interface remains in
gion M where it cannot coexist with liquid.

B. Compact notation

Though some details of the phase-ordering kinetics
colloid-polymer mixtures cannot be determined without
phenomenological model, we have identified a large num
of regions in the phase diagram, with distinct regimes
behavior in the initial and final stages. With such a lar
number of possible scenarios to catalog, it is advisable
devise a compact notation by which to represent the orde
events.

Four generic processes or events are of interest, which
shall represent by the following symbols: formation of a ne
phase~d!, spinodal decomposition into a pair of new phas
~s!, the complete disappearance of a phase~when neighbor-
ing regions encroach upon it by interfacial motion, i.
evaporation, condensation, etc.! ~-!, the survival of a phase in
the final equilibrium state~j!. Each of these processes ma
occur within a region of colloidal gas~g!, liquid ~l!, or
crystal5 ~x! ~identified unambiguously by the definitio
above!, and this will be indicated by the lateral position o
the symbol~g, l, x from left to right!. Any two such pro-
cesses~a andb, say! may be causally related in one of th
following ways: ~1! Either may occur, independently of th
other.~2! b cannot occur until aftera. ~3! Given a, b must
follow. In the latter two relationships,a precedesb, but the
dependence of one on the other is opposite in~2! and ~3!.
Hence, with time represented vertically~increasing down the
page! relationships~2! and ~3! can be represented as opp
sitely directed line segments, while relationship~1!, which
has no causal dependence, is shown as an undirected
segment, thus

5Additionally, spinodal decomposition takes place in the unsta
regionbetween gand l.
3-5
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R. M. L. EVANS, W. C. K. POON, AND F. RENTH PHYSICAL REVIEW E64 031403
The arrow may be thought of as a mathematical ‘‘implie
sign. An upward arrow would tend to represent a slow s
cession of events, since the second nucleation process ca
take place until conditions in the majority phase ha
changed sufficiently, under the influence of the preced
process.6 A downward arrow would tend to represent a ve
rapid succession of events, such as the immediate forma
of gas, necessitated by the nucleation of crystals, as in re
M described above. In that particular example, arrows wo
point in both directions, since gascannotform until crystals
nucleate, but is thencompelledto form. Thus, the dynamics
in the part of regionM belowthe gray locus in Fig. 3~which
will end in crystal-liquid coexistence! is represented by the
following pathway diagram:

This diagram indicates a strange scenario. The mixture
gins as a homogeneous liquid, and ends in crystal-liquid
existence. However, on the way, gas phasemustappear~an
arrow in the diagram points to its formation! and then disap-
pear.

Since we have only determined which pathways are th
modynamically forbidden, or elsepossible, as opposed to
which scenario willactually result from a particular equatio
of motion, a pathway diagram contains all possible s
narios. Hence any subdiagram, obtained by removing an
rearranging parts of a pathway diagram, is thermodyna
cally allowed, so long as it contains all final states~j!, in-
cludes any process pointed to from another process in
subdiagram, and does not swap processes on a directed
ment. In some cases, including the example above, the
gram cannot be reduced, so the problem of determining
order of events during phase separation is solved outri
The complete set of pathway diagrams, cataloging the
pected kinetics of colloid-polymer mixtures in all regions
the phase diagram, is given in Sec. IV C. In some ca
~cited in Sec. IV C!, the putative behavior is already record
in the literature. Note that the derivation of these diagra
does not require precision in the mean-field semigrand
tential used, but relies only on its topological features, wh
can mostly be inferred from the phase diagram.

C. Catalog of kinetic regimes in the colloid-polymer
phase diagram

Using the rules set out above, the order of thermodyna
cally allowed events during phase ordering is determined
each region of the colloid-polymer phase diagram@Fig.

6However, some rapidheterogeneoussecondary nucleation ma
take place, close to the initially formed nuclei, before conditions
the bulk have changed to favor the secondary process.
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3~b!#. The initial and final states, and allowable intermedia
paths, are summarized in the following pathway diagram
Gas, liquid, and crystalline phases appear from left to rig
respectively, and chronological order advances from top
bottom within each diagram. We recall that nonergodic~i.e.,
gel and glass! phases are neglected by the theory. For regi
which areintersectedby the locus of quenches that equil
brate to three-phase final states@shaded gray in Fig. 3~b!#, the
various alternative final states are shown in the correspo
ing pathway diagram, separated by dashed lines.
3-6
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Let us briefly consider some of these pathway diagra
The diagram for regionB corresponds to classical spinod
decomposition@23#. That theory, in common with the prese
analysis, assumes local quasiequilibrium, allowing inform
tion to be derived from a free-energy function. It therefo
also neglects nonergodic~glassy! phases, which can in prac
tice modify the process@5,6#.
03140
s.

-

The pathway diagram for regionE represents straightfor
ward nucleation of a crystal phase from the majority sup
saturated gas. The diagram for the part of regionF above the
three-phase locus~i.e., with the first alternative ending: gas
crystal equilibrium! contains the simple regionE pathway as
a subdiagram. However, it also contains the possibility
crystal formation proceeding via an intermediate metasta
liquid phase. Such a process has been studied in terms o
influence on both nucleation@7# and subsequent growt
@31,20# mechanisms. A further subdivision of this part
regionF was predicted@20#, with two regimes corresponding
to the two subdiagrams.

The process represented by the pathway diagram for
part of regionG above the three-phase locus~with the first
alternative ending of the diagram! has been evidenced i
recent Brownian dynamics simulations of colloid-polym
mixtures @32#. Although the final equilibrium state is gas
crystal coexistence, a spinodal-like instability led to the a
pearance of a texture of high and low density amorph
regions during the early stages of these simulations. Crys
subsequently formed in one of these regions~the higher den-
sity region in this case!.

The diagram for regionI, because it is the largest dia
gram, contains the least information. It only shows that
things are possible in this region, since no order of event
thermodynamically forbidden. The actual kinetically dete
mined pathway remains a mystery. To predict the behavio
this region requires the calculation of nucleation rates~many
of which have been estimated for this and other regions
the phase diagram@10#! and growth rates.

The pathway diagram for the part of regionM below the
three-phase locus is discussed in Secs. IV and IV B,
modeled in Sec. VII.

It is well known @13,19# that the phase diagram fo
colloid-polymer mixtures changes in topology if th
polymer-colloid size ratio is below about 0.25. In that ca
the equilibrium gas-liquid binodal disappears entirely with
the gas-crystal coexistence region, so that gas-liquid coe
ence is only a metastable phenomenon and no triple p
exists. Nevertheless, the common tangent can be constru
between the gas and liquid minima of the free energy, so
this metastable binodal could be mapped out on the ph
diagram, as, one imagines, could the metastable liqu
crystal coexistence boundaries.7 So all the metastable coex
istence boundaries that appear above the triple line in
3~b! should remain in the small-polymer case, delineating
same regimes of behavior~E to M!. RegionsA to D, on the
other hand, should no longer appear.

V. APPLICATION TO OTHER ‘‘LIATROPIC’’ SYSTEMS

Our analysis of the phase-ordering pathways accessib
a system with three free-energy minima is not restricted
colloid-polymer mixtures. There are many liatropic syste
comprising two components in an incompressible solve

7The liquid side of such a liquid-crystal metastable binodal wo
have to begin and end on the gas-liquid spinodal.
3-7
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Given that the phase diagram has the topology of Fig. 3~b! in
terms of the concentrationf of the slower component, an
that the dynamics is Brownian so that ordering is not limit
by heat transport, then the above pathway diagrams emb
the admissible behaviors. For example, the phase diagra
mixtures of colloidal boehmite rods and flexible polyme
@33# has the same topology as that of our colloid-polym
mixtures. We therefore expect phase ordering to follow
above pathway diagrams, taken to represent~from left to
right! the dilute isotropic, concentrated isotropic, and ne
atic phases.

Note that each pathway diagram shown initiates in one
the amorphous phases~gas, liquid, or unstable!. For practical
reasons, phase ordering of colloid-polymer mixtures is ne
initiated in a uniform nonequilibrium crystalline state. W
have therefore not presented diagrams initiated by a lin
the rightmost column. However, for other liatropic system
sharing the phase-diagram topology of Fig. 3~b!, additional
such pathway diagrams may be relevant, representin
quench into the high-concentration, ordered phase.

For systems with more elaborate phase diagrams,
methodology can again be used, extending phase bound
into multiphase regions to delineate kinetic regimes. The
ements of the pathway diagrams defined above~with more
columns if more than three phases are to be represen!
should suffice to summarize the results in a set of new
grams appropriate to the given system.

VI. CORRESPONDENCE TO ATOMIC AND SIMPLE
MOLECULAR SUBSTANCES

We noted, in Secs. I and II, the similarity between t
equilibrium phase diagram of a colloid-polymer mixture a
that of an atomic or simple molecular substance, if recipro
temperature is substituted for polymeric activity. It is inte
esting now to investigate the exactness of that corresp
dence in terms of kinetics.

All interactions in the colloid-polymer mixture~CPM! are
approximately hard and repulsive. Thus, the system has
characteristic energy scale, so temperature is an irrele
field. The two conserved fields, colloidal and polymeric co
centration, can be mapped onto a purely colloidal sys
with effective interactions parametrized by polymeric act
ity. Similarly a simple molecular substance~SMS! is gov-
erned by two conserved fields: material density and ene
density; the latter can be described in terms of a tempera
which parameterizes the interactions of the former.

For an ideal polymer~as approximated at the polymericu
point!, the depth of the effective colloid-colloid interactio
potential is proportional to the concentration~number den-
sity! of polymernfree in the free volumeallowed to it by the
colloid. This is equal to the ideal polymeric activityap , and
related to the actual polymeric concentrationn by n
5a(f)nfree, wherea~f! is the fraction of the total volume
available to the polymer. The behavior of a SMS depends
the interaction potential, measured in units ofkBT. Thus, in
physically relevant units, the depth of the potential is prop
tional to 1/T. So it seems reasonable to make the corresp
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21. Both quantities are nonconserved, and ta

values in the range@0, `#.
Nucleation of a denser phase tends to be exothermic

SMS, and therefore locally increases the temperature. Co
spondingly in a CPM, such an event locally increases
free volume fractiona and therefore lowers the activityap .

Subsequent to this, in a SMS, the temperature field eq
brates diffusively, whilst respecting conservation of ener
For differencesDT from the ambient temperature, that co
servation is expressed~in the absence of further phas
changes! by

E d3r CDT5const,

where the integral is over the whole system, andC is the heat
capacity~at constant pressure! per unit volume, which ap-
pears inside the integral since it is a property of the differ
phases present. In a CPM, the polymer concentration,
hence also its reciprocal activity, equilibrates diffusive
whilst respecting conservation of the number of polym
molecules. In terms of small changesD(ap

21) in the recipro-
cal polymeric activity, that conservation can be written

E d3r ap
2a~f!D~ap

21!5const.

This and the accompanying diffusion equation forD(ap
21)

hold only for small changes from the ambient activity, b
that is also the case for the SMS temperature field, sinceC is
T dependent.

Finally, consider the latent heat of a phase change i
SMS. Since heat corresponds to polymer number in a CP
we see that the latent heat per unit volume, measure
constant temperature, corresponds toapDa, whereDa is the
change in free volume fraction, brought about by the re
rangement of the colloidal latices.

In summary, the thermodynamics of phase ordering
colloid-polymer mixtures, investigated in this paper, appl
also to simple molecular substances, with the following ex
correspondences:

simple molecular substance↔colloid-polymer mixture,

heat↔polymer number,

temperature↔ap
21,

heat capacity/unit volume↔ap
2a,

latent heat/unit volume↔apDa.

Thus a consideration of kinetic regimes in thef-n plane
for a colloid-polymer mixture translates into the densit
energy plane for a molecular liquid undergoing adiaba
change at constant volume. The approach to equilibrium
such a system—subtriple liquid benzene in an insulat
container at fixed volume—is discussed in Ref.@25#, where
3-8
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experimental data are reviewed, and entropy changes
considered for processes equivalent to parts of diagramsI, J,
andK.

VII. NUMERIC MODELING

A. A toy model

We have predicted various kinetic regimes from the qu
tative features of a system’s free energy, irrespective of
dynamic phenomenology. Since any model of phase-orde
dynamics should display the predicted behavior, we test
theory using the simplest: modelB @34#, or the Cahn-Hilliard
equation @35#. Using numeric quadrature, we observe t
model’s behavior in one of the more exotic putative kine
regimes.

In this purely diffusive model, the single order parame
f(r ) ~here representing colloidal concentration! is con-
served. It therefore respects a continuity equation

ḟ52div j

with the flux j responding to the gradient in the chemic
potentialm, in proportion to a mobilityG

j52G gradm.

As the system is inhomogeneous, its free energyF is a func-
tional of the fieldf(r ), so the chemical potential~derivative
of free energy with respect to concentration! is a functional
derivative

m5
dF@f~r !#

df~r !
.

At a given point in space, the free-energy density~in this
case, a semigrand potential! is some thermodynamic functio
V~f! of the local concentration, such as that shown in Fig
Additionally, there is a penalty~always positive! to spatial
variations off, which must be included, as it is the source
surface tension between phases, though it does not mo
the thermodynamic phase diagram. SoF has the form

F@f~r !#5E d3r $V~f!1 1
2 ku¹fu2%.

With a suitable choice~discussed below! of the curveV~f!
and the parametersG andk, these equations were quantize
in space and time. The time step and grid parameter w
each reduced until they had no effect on the results. A de
ministic algorithm was used which rigorously conserved m
terial both in the bulk and at the boundary. Spherical sy
metry was imposed on the system, so that three sp
dimensions were modeled by a linear set of data points~each
datum representing the amount of material within a spher
shell!.

It is known that, at low concentrations,G}f ~this is re-
quired to make the diffusivity of an ideal gas independen
its concentration!. However, since we are concerned le
with the ideal-gas limit than with numerical efficiency, w
choose a constant mobility, recalling that the results sho
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be qualitatively independent of the precise phenomenolo
As this constant serves only to scale time, it is set to un
without further loss of generality.

For a givenV~f!, the constantk determines the thicknes
of an interface~the length scale of its structure, above whi
it appears sharp!, which is also the length scale of a critica
nucleus. As this is the only length scale other than sys
size, it can be fixed at will without loss of generality. In o
casek5200 was chosen, to give interfacial widths of ord
unity.

TheV~f! curve employed has thequalitativefeatures of a
colloid-polymer mixture’s semigrand potential, while bein
both differentiable and algebraically simple for numerical
ficiency. Following Ref.@19#, we write the bulkcanonical
free-energy densityf (f,np) in two parts: that of a pure col
loid in the absence of polymerf c(f), and that of an ideal
gas of polymerf p(np ,f) of number densitynp , confined to
a fractiona~f! of the volume, thus

f 5 f c~f!1 f p~np ,f!.

Since pure colloid can exist in two phases,f c(f) in our toy
model is a function with two wells; a broad one represent
the fluid phase, and a narrower one at higherf, representing
the solid, as shown in Fig. 4. The ideal polymer’s free ene
density is

f p5npF lnS np

a~f! D21G
and the free volume fractiona~f! has the physically realistic
values a(0)51, a(1)50, and becomes very small asf
→1. The simple functiona(f)5(12f)7 has the appropri-
ate properties.

The resulting polymeric chemical potential is

FIG. 4. The ‘‘colloidlike’’ free-energy densityf c(f) is a simple
algebraic function,f211(0.642f)21@11b2(f2c)2#21 with two
wells. The barrier separating the wells has a sharpness setb
510 and a positionc50.45.
3-9
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mp5S ] f

]np
D

f

5 ln
np

a~f!
.

Hence, we can make a Legendre transform to the semig
potential densityV(f)5 f (f,np)2mpnp , which is a func-
tion of colloidal concentration, parametrized by the po
meric chemical potential. In terms of the polymeric activ
ap[emp,

V~f!5 f c~f!2apa~f!. ~3!

@See Fig. 4 for the form off c(f).# For activities above the
critical valueap

crit519.2, V~f! has three minima; the effect
of the polymer is to divide the fluid well off c into two,
yielding separate gas and liquid phases.

We model the limit in which collective diffusion of poly
mer is much faster than that of colloid. Hence the gas
polymer is always fully equilibrated, so thatap is uniform
throughout the system. Nevertheless, as in the labora
polymer is conserved in our model. The mean density
polymer np is fixed throughout the evolution. For each i
stantaneous colloidal concentration profilef(r ), the total
volume free to the polymer,*a(f)d3r , is found. From this,
a new polymeric activityap is calculated, and used to param
etrizeV~f!.

B. The toy phase diagram

The phase diagram in Fig. 5, which includes metasta
binodals delineating the predicted kinetic regimes, was p
duced by plotting the values off that are cotangential in Eq
~3!, for a range ofap . This phase diagram has the sam
topology as that of a colloid-polymer mixture with suffi
ciently large polymer. Triple coexistence is atap[ap

tr

523.2, with phases of concentrationsf50.156, 0.304, and
0.566. In the absence of polymer~at ap50!, only two phases
exist: fluid and solid~though we have not attempted
mimic the true hard-sphere binodal concentrations of 0.

FIG. 5. The equilibrium phase diagram~solid lines! plus kinetic
boundaries~dotted! and spinodal~dashed! in the plane of colloidal
concentrationf and polymeric activityap , resulting from the toy
semigrand potential, Eq.~3!. Numerics were performed on an initia
state at* .
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and 0.545!. Gas-liquid, liquid-solid, and gas-solid cotange
cies are shown dotted in Fig. 5 wherever they do not co
spond to the lowest tangents on theV~f! curve ~i.e., where
they are metastable binodals!. The gas and liquid branche
that~locally! coexist with solid both end where they meet t
gas-liquid spinodal ~dashed!. The corresponding solid
branches cross at the triple line, and terminate shortly
yond it, though they are so close together that they appea
a single unbroken line in the figure. The metastable conti
ation of the gas-liquid binodal terminates atap'42, where
the liquid becomes unstable with respect to solidificatio
though this will not concern us.

C. Phase-ordering results

We model a situation in which a homogeneous metasta
liquid is prepared at the point marked* in Fig. 5 ~f50.4,
np51.13 in the arbitrary units of the toy model⇒ap

init540!,
which is in kinetic regionM ~discussed in Secs. IV an
IV B !. For this composition, initiallyabovethe triple line, the
equilibriumstate is liquid-solid coexistence~belowthe triple
line!. The curveV~f!, appropriate for a homogeneous sy
tem atap5ap

init540, is shown in Fig. 6.
As our numerics contain no noise, the system will n

evolve from an initially uniform concentration. At time zero
we introduce a small nucleus of a second phase: a sphe
gas atf50.1, centered on the origin, with radius 6. Conce
tration is plotted against radial distance in Fig. 7, where t
initial state has a step profile, shown as a dashed line. S
shots of the system’s evolution at subsequent times
shown as solid lines. We see that the gas bubble rap
collapses.8 Hence, as predicted, gas cannot nucleate firs
regionM.

8This is not a result of the bubble’s radius being subcritic
Bubbles much larger than the characteristic interfacial width w
also seen to collapse.

FIG. 6. The semigrand potential densityV~f! at ap540 in Fig.
5. An irrelevant linear part, 40f, has been subtracted for clarity.
3-10
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In a second scenario, a spherical nucleus of solidf
50.6) of radius 3~which is just supercritical! was introduced
into the same metastable liquid. Snapshots of the evolu
of its profile are shown in Fig. 8. The overall radius of t
system is 300.

As shown in the inset to Fig. 8 the condensation nucl
very rapidly loses its artificially sharp boundary, acquiri
instead a transitional zone, with width of order unity, fro
the concentration of the solid to that of the ambient liqu
The nucleus next loses its artificially high concentrationf
50.6, relaxing to a value aroundf50.57. Unlike the gas
nucleus described above, this solid nucleus grows rapidly
these early stages, there is an interface between the solid
the surrounding metastable liquid that cannot be describe
terms of local quasiequilibrium between phases. In regionM,
no common tangent exists between the solid and liquid w

FIG. 7. The concentration profilef(r ) of a spherically symmet-
ric gas nucleus immersed in a metastable liquid in regionM. The
initially sharp profile~dashed line! disperses over the subseque
times ~full lines! t50.05, 0.1, 0.15, 0.2, 0.25, 0.3.

FIG. 8. The concentration profilef(r ) of a spherically symmet-
ric solid nucleus immersed in a metastable liquid in regionM. After
an early stage of rapid growth, a shell of gas spontaneously fo
around the solid, although there is no noise in the system. Eve
ally global equilibrium is attained, with no gas present. Snapsh
are at t50 ~full line!, 1.5 ~dashed!, 3 ~dotted!, 4.5 ~full !, 24
~dashed!, 54 ~dotted!, 90 ~full !, 108 ~dashed!, 168 ~dotted!. Inset:
Close up att50, 1024, 1023, 1022.
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of V~f!, indicating that pressures and chemical potenti
cannot be balanced across a solid-liquid interface. The in
face observed early in the numerics is moving so fast tha
equilibrium interface approximation is invalid. Nevertheles
the growth rate decreases with time, until such an appro
mation does hold. Accordingly, att'3.7, the solid nucleus
acquires the predicted shell of gas, buffering it from the
compatible liquid. Though this gas appears suddenly
spontaneously, we recall that the algorithm is purely de
ministic, containing no noise. For the sake of computatio
speed, it is tempting in the numerics to use a large g
spacingdr. Though the correct final equilibrium state wa
obtained using larger grids, the shell of gas only formed
dru0.5, which is several times smaller than interfac
widths and necessitates a very small time step for numer
stability.

When alone, a gas nucleus collapsed~Fig. 7!, so the shell
of gas in Fig. 8 relies, for its existence, on the presence of
solid. Despite this, the shell actually grows to a width mu
greater than the characteristic interfacial thickness. Its ab
to do so is explained by Fig. 9 which is a close-up view
the concentration profile and the associated colloidal che
cal potential profile in the neighborhood of the shell of g
phase at timet518.

Material flows in response to the gradient ofm. We see in
Fig. 9 that this gradient in the liquid phase~on the right of
the picture! drives material towards the shell of gas, tendi
to fill it in, and thus destroy it. Nevertheless, the chemic
potential gradient within the gas is high enough to drive
larger flux of material away from the liquid interface, mak
ing it recede. This material is deposited at the solid interfa
where it is compacted, saving space. Despite the existenc
a chemical potential gradient within the solid, driving mat
rial towards the gas cavity, the interface on the left of the g
advances more slowly than that on the right, so the gas ph
grows. We believe this mechanism is not an artifact of
constancy of the mobilityG. Whatever the form ofG~f!, the
system must organize itself so that diffusion through the
shell out-competes the fluxes tending to collapse it.

As the solid nucleus grows, the metastable liquid is d
pleted in concentration, so free volume is made available

s
u-
ts

FIG. 9. Colloidal concentrationf ~full line! and chemical po-
tential m ~dashed line! in the neighborhood of the shell of the ga
phase as a function of radial distance at timet518. From left to
right, the phases are solid, gas, liquid. The gradient of the chem
potential is highest in the gas phase.
3-11
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the finite amount of polymer. Hence polymeric activityap
falls. For apu25 ~see Fig. 5! solid and liquid can exist in
local equilibrium. Hence the gas shell eventually disappe
from the system att'105. The time at which this occur
depends on the size of our model system or, in reality, on
distance between condensation nuclei. Finally, the sys
comes to equilibrium, with uniform regions of solid and liq
uid separated by a single interface.

Figure 10 shows the evolution of the uniform polyme
activity ap with time t during the entire phase-ordering pr
cess. The general trend is downwards, since this corresp
to a lowering of the free energy of the ideal gas of polym
However, this is not the only contribution to the free ener
and when the colloid finally removes its unfavorable g
phase from the system, it does so at the expense of polym
entropy, so there is a small upturn inap at t5105.

It would be interesting to know how gravity would effe
the unusual regionM dynamics, in which gas forms despi
being thermodynamically unfavorable. If the colloidal pa
ticles are denser than the solvent, gravity would tend to se

FIG. 10. Variation of polymeric activity throughout the phas
ordering process. Features att53.7 andt5105 betray the forma-
tion and subsequent disappearance of the gas shell. The final e
nential relaxation to equilibrium appears as a linear tail in
logarithmic linear plot.
-
3

.
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rate some of the buoyant colloidal gas phase from the s
nuclei that it coats, and carry it to the top of the container.
attain thermodynamic equilibrium, the liquid and sol
phases would subsequently have to rise, against gravity
fill the gaseous void. It might be informative to model such
system.

VIII. SUMMARY AND CONCLUSION

We have shown that many distinct kinetic regimes can
charted within regions of equilibrium coexistence in t
phase diagram, for a colloid-polymer mixture as for a wi
variety of other systems. This we have done without ref
ence to specific phenomenological equations of moti
since the second law of thermodynamics allows a great d
of information to be extracted from the nonconvex mea
field free energy as a function of conserved order parame
It is difficult to assess whether the resulting phase-order
pathways, given in Sec. IV C and mapped out in Fig.
explain all of the diverseness observed in colloid-polym
mixtures ~reported in the preceding paper@16#!, since the
macroscopic experimental observations require some in
pretation to infer the underlying microscopic processes. C
tainly though, there appears to be sufficient richness in
physical results of our theory, and some of the observati
at least~e.g., crystallites or gas phase being seen first@16#!
are in quite clear agreement.

We expect that the concise notation of pathway diagra
will be useful in future studies, as they convey not only
sequence of possible events, but the causal relationships
tween them. It is hoped that the predicted novel mechan
of nucleation and growth, where a shell of one phase m
intervene between another two, will be definitively observ
in future experimental systems.
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